Interesting Problem

Based on P= hdg and pressure = thrust /area

A tank with a square base of area 1.0 m^2 is divided by a vertical partition in the middle.

The bottom of the partition has a small-hinged door of area $20cm^2$.

The tank is filled with water in one compartment, and an acid (of relative density 1.7) in the other, both to a height of 4.0 m.

compute the force necessary to keep the door closed.

schematic diagram

For the compartment containing water:

Height of water column, h = 4.0 m Density of water, $\rho = 10^3 kg \ m^{-3}$

∴ Pressure due to water at the bottom of the partition,

$$P_{water} = h\rho g$$

= 4.0 × 10³ × 9.8
= 39.2 × 10³ Pa

For the compartment containing acid:

Height of acid column, h = 4.0 m Density of the acid, $\rho' = 1.7 \times 10^3 kg m^{-3}$

∴ Pressure due to acid at the bottom of the partition,

$$P_{acid} = h\rho' g$$

= 4.0 × 1.7 × 10³ × 9.8
= 66.4 × 10³ Pa

pressure difference causes unequal force

Now,
$$P_{acid} - P_{water} = 66.4 \times 10^3 - 39.2 \times 10^3$$

= 27.44 × 10³ Pa

This additional pressure must be acting on the connecting door from acid towards water

Also, area of the door, A= $20 \ cm^2 = 20 \times 10^{-4} m^2$

Force on the door due to difference of their pressure on its two sides

$$\therefore F = (P_{acid} - P_{water}) \times A$$

$$= 27.44 \times 10^3 \times 20 \times 10^{-4}$$

= 54.88 N

Hence the force necessary to keep the door closed =54.88N

Α CIET **NCERT** PRESENTATION