Interesting Problem

Based on $\mathrm{P}=\mathrm{hdg}$ and pressure $=$ thrust /area

A tank with a square base of area $1.0 \boldsymbol{m}^{2}$ is divided by a vertical partition in the middle.

The bottom of the partition has a small-hinged door of area $\mathbf{2 0} \mathrm{cm}^{2}$.

The tank is filled with water in one compartment, and an acid (of relative density 1.7) in the other, both to a height of 4.0 m .
compute the force necessary to keep the door closed.

schematic diagram

For the compartment containing water:

Height of water column, $\mathrm{h}=4.0 \mathrm{~m}$
Density of water, $\rho=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
\therefore Pressure due to water at the bottom of the partition,

$$
\begin{aligned}
P_{\text {water }} & =h \rho g \\
& =4.0 \times 10^{3} \times 9.8 \\
& =39.2 \times 10^{3} \mathrm{~Pa}
\end{aligned}
$$

For the compartment containing acid:

Height of acid column, $\mathrm{h}=4.0 \mathrm{~m}$
Density of the acid, $\rho^{\prime}=1.7 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
\therefore Pressure due to acid at the bottom of the partition,

$$
\begin{aligned}
P_{\text {acid }} & =h \rho^{\prime} g \\
& =4.0 \times 1.7 \times 10^{3} \times 9.8 \\
& =66.4 \times 10^{3} \mathrm{~Pa}
\end{aligned}
$$

pressure difference causes unequal force

Now, $P_{\text {acid }}-P_{\text {water }}=66.4 \times 10^{3}-39.2 \times 10^{3}$

$$
=27.44 \times 10^{3} \mathrm{~Pa}
$$

This additional pressure must be acting on the connecting door from acid towards water

Also, area of the door, $A=20 \mathrm{~cm}^{2}=20 \times 10^{-4} \mathrm{~m}^{2}$

Force on the door due to difference of their pressure on its two sides

$\therefore \mathrm{F}=\left(P_{\text {acid }}-P_{\text {water }}\right) \times A$

$$
=27.44 \times 10^{3} \times 20 \times 10^{-4}
$$

$$
=54.88 \mathrm{~N}
$$

Hence the force necessary to keep the door closed $=54.88 \mathrm{~N}$

A CIET NCERT PRESENTATION

